Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev B ; 100(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38617197

RESUMO

We present a quantitative experimental investigation of the scalar chiral magnetic order with in Nd3Sb3Mg2O14. Static magnetization reveals a net ferromagnetic ground state, and inelastic neutron scattering from the hyperfine coupled nuclear spin reveals a local ordered moment of 1.76(6) µB, just 61(2)% of the saturated moment size. The experiments exclude static disorder as the source of the reduced moment. A 38(1) µeV gap in the magnetic excitation spectrum inferred from heat capacity rules out thermal fluctuations and suggests a multipolar explanation for the moment reduction. We compare Nd3Sb3Mg2O14 to Nd pyrochlores and show that Nd2Zr2O7 is in a spin fragmented state using nuclear Schottky heat capacity.

2.
Phys Rev Lett ; 120(19): 196001, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799243

RESUMO

Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

3.
Phys Chem Chem Phys ; 16(33): 17960-74, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25047147

RESUMO

In this paper, we report an inelastic neutron scattering study of liquid and solid n-H2 confined within MCM-41. This is a high surface area, mesoporous silica glass with a narrow pore size distribution centered at 3.5 nm. The scattering data provides information about the diffusive and rotational dynamics of the adsorbed n-H2 at low temperatures. In the liquid state, the neutron scattering data demonstrates that only a fraction of the adsorbed o-H2 is mobile on the picosecond time scale. This mobile fraction undergoes liquid-like jump diffusion, and values for the residence time τ and effective mean-squared displacement 〈u(2)〉 are reported as a function of pore filling. In the solid state, the rotational energy levels of adsorbed H2 are strongly perturbed from their free quantum rotor behavior in the bulk solid. The underlying orientational potential of the hindered rotors is due to the surface roughness and heterogeneity of the MCM-41 pore walls. This potential is compared to the hindering potential of other porous silicas, such as Vycor. Strong selective adsorption makes the interfacial layer rich in o-H2, leaving the inner core volume consisting of a depleted mixture of o-H2 and p-H2.

4.
Phys Rev Lett ; 109(7): 075301, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006380

RESUMO

We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4 nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure (4)He adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of (3)He-(4)He mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ∼2.3 nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures.

5.
J Chem Phys ; 134(11): 114506, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428631

RESUMO

We report a comparative neutron scattering study of the molecular mobility and nonexponential relaxation of three structurally similar glass-forming liquids, isopropanol, propylene glycol, and glycerol, both in bulk and confined in porous Vycor glass. Confinement reduces molecular mobility in all three liquids, and suppresses crystallization in isopropanol. High-resolution quasielastic neutron scattering spectra were fit to Fourier transformed Kohlrausch functions exp[-(t∕τ)(ß)], describing the α-relaxation processes in these liquids. The stretching parameter ß is roughly constant with wavevector Q and over the temperature range explored in bulk glycerol and propylene glycol, but varies both with Q and temperature in confinement. Average relaxation times <τ(Q)> are longer at lower temperatures and in confinement. They obey a power law <τ(Q)> ∝ Q(-γ), where the exponent γ is modified by confinement. Comparison of the bulk and confined liquids lends support to the idea that structural and∕or dynamical heterogeneity underlies the nonexponential relaxation of glass formers, as widely hypothesized in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...